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Abstract. The paper presents a new stochastic model for studying the optimization of function-
ing rules in distributed computing. In this model a network is represented by a finite number of
continuous-time homogeneous Markov processes which are connected by relations between entries
of their intensity matrices. Good functioning rules are those optimizing a guide function defined
according to the context. Two specific optimization problems are studied: a problem of resource
allocation with conflicts between processes, and a problem of access to shared resources. The latter
is a linearly constrained nonconvex problem with an objective function which is a sum of ratios of
linear functions of special form.
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1. Introduction

The aim of this paper is to develop a new continuous-time stochastic model for
optimizing the functioning of distributed computing networks. Although this model

is technically more difficult to handle than the discrete-time model developed in our
previous papers [2, 4, 5] it is closer to reality, and at the same time, more flexible
for the applications. Taking into account the importance of local considerations,
the model involves local states for each site, transitions between these states and
relations characterizing the network, along with a guide function which defines the
criterion of good functioning. More specifically, a distributed system is represen-
ted by a finite number of interconnected homogeneous continuous-time Markov
processes. The interconnection into network is ensured by relations between the
entries of the intensity matrices of these Markov processes. The entries of the
intensity matrices are the ‘variables’ of the model, the relations describing the
interconnection constitute the ‘constraints’, while the guide function defining the
criterion of functioning is the objective function to be optimized. An optimal func-
tioning rule of the system is then an optimal solution of this constrained optimiza-
tion problem. As illustrations, we shall discuss two optimization problems arising
from this model: the problem of resource allocation with conflicts between pro-
cesses, formulated through the model of the ‘dining philosophers problem’, and
the problem of access to shared resources with mutual exclusion. It turns out that
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in each considered case, by exploiting the particular structure of the problem, an
optimal solution can be found in closed form, even though the objective function
may be highly nonconvex (sum of ratios of linear functions). The emphasis on
closed forms for optimal solutions is motivated by our primary interest in clari-
fying general optimal functioning rules rather than in solving specific numerical
problems.

We refer the reader to [1, 6], [14, 13] for the general concepts, models and
applications of distributed computing; to [2-5], for studies on Optimization and
Performance Evaluation in Distributed Computing, especially via a discrete-time
stochastic model; to [15] for basic concepts and results in global optimization;
and finally to [10, 11] for basic concepts and results on Probability Theory and
Stochastic Processes.

2. Continuous-time Markov networks

Let *X,);>0, k € {1,..., N} be N homogeneous continuous-time Markov pro-
cesses defined on a probability space #2 Pr), having the same finite state space
S.

Suppose that their stochastic matrices

Py = (*p@.i, j))j’jes, t>0, kefl,..., N},

satisfy the condition lim.o*P(t) = I, I being the identity matrix, viz. lig,*
P(t.i, j) =1ifi = jand = 0ifi # j.
We recall that then the limit

k _
kp@) = lim P01

k .
= exist
t>0,r—0 t Q S

wherek Q is a matrix whose entries satisfy
“qi; >0 if i#j, and *g; <0, with
> kg =0, ieS, ke{l... . N}
jes

For convenience, denote; = —(*¢;;) > 0,i € S. The following results will be
used in the next section:

a) “P(1) = % =1+ Y,.,¢0)"%, t >0, Qs called theintensity
matrix of ¥ P(¢). (cf. [10], p. 238)
b) The limit lim,_ o *P(t,i, j) = k= (i, j),i,j € S, exist for anyk and their
convergence is exponentially fast. In matrix notation,
lim P =*Tand*t1.*Q =0

t—0o0
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In the present case, we suppose Wiat 1, ..., N there is only one class of
(recurrent) states. THer (i, j)'s are then independent bind we shall denote
them by*x;. In this case!IT is a matrix with identical rows, and a row bf1
is a stationary probability distribution for th&" process.

c) Letnow*W = (*w(, j)); jes be the matrix whose entriésu(i, j) are the
meansE; (“z;) of the first passage timés; (of thek™ process) starting from
i,* 7; being defined ast; = min{r > 0: %X, = j}. Then

"W = (EXZgy —*2).(T14e) 7t 1)

where £ is the matrix whose entries are all equal td Z, = (‘I1 — ¥Q)~!
and*Z,, denotes the matrix resulting from setting all the entriesbff the
main diagonal equal to 0, and similarly fa ;,. (cf. [10], Proposition 8.9, p.
255).

d) Let*u(i) be the mean recurrence time of statee., the mean time elapsed
between an entry into stateand the next return to (of the k" process),
consisting of a sojourn time ih ending in a jump to somg € S,j # i,
followed by a first passage frorhtoi. Then

1
koo .
n(@) = ik ieS 2

Let k&(i) be the Smoluchowskian mean recurrence time (cf.[10], p. 256), i.e.
the mean time elapsed between an exit fioamd the next return th Then

1—k7Tl'
LR

e(i) = 3)

In our model, theV continuous time Markov processes repreSérocessors,
connected in network by relation®,, » € H, between entries of their intensity
matrices*Q,k € {1,..., N}. According to the context, a guide functian is
defined on the entries 600, k € {1, ..., N}. A functioning rule for such a net-
work is represented by a vector whose components are the €éuttieg), i, j €
S,k e {1,..., N}, of intensity matrices satisfyin®,, » € H. Choices for good
functionings are based on criteria which optimiZeinder constraint®,,, h € H.

In general many criteria are available. In this paper we focus on those criteria for
which the optimal solution of the corresponding problem can be found in closed
form, so that general functioning rules based on these criteria can be explicitly
derived in terms of the values of the basic parameters of the problem.

Next we discuss the application of this approach to two typical problems: the
so-called ‘dining philosophers problem’ which models a problem of resource al-
location with conflicts, and the problem of access to shared resources, which is a
mutual exclusion problem.
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3. A problem of resource allocation with conflicts

In this problem of resource allocation with conflicts between processes in distrib-
uted computing (cf. [7,9]), theV processors are represented Byphilosophers
arranged in a circle around a spaghettis plate, with a fork between each pair of
philosophers. In order to eat, each philosopher needs his two adjacent forks. As
above-mentioned, we can consider several possibilities for using the model for a
given problem. Here we propose to examine two typical cases.

a) In the first case, the state space S consists of four elements: ‘waiting (request)’
(state 1), ‘with one fork (refusal)’ (state 2), ‘with 2 forks (acceptance)’ (state 3),
‘thinking (execution)’ (state 4). The evolution of the philosopher is represented
by the intensity matrix

—*q12 g1 0 0
k 0= 0 —kCI23 kC]zs
0 0 —kQ34 —kCI34
kgan 0 0 —*qm

For a small lapse of time\¢, the corresponding stochastic mattiR(A¢) is
equivalent to

1- kqlel kqlel 0 0
0 1—FgoaAt  *gpzAt
0 0 1- kQ34AI —kq34At
kQ41AI 0 0 1- kQ41At

An efficient functioning of the network should ensure that the time during which
the philosophers keep themselves busy to eat is as long as possible. This suggests
that the chance of a philosopher to pass from state 2 to state 3 should be linked with
the chance of his neighbour to pass from state 1 to state 2, SO that the connection
into network can be expressed as

kgro+ Mgz =c;, kefl,...,N}
Ng1o+ Ygo3=cy, where ci,...,cy are constant
PROPOSITION 3.1.(i) A stationary probability for the&'” process is

(knl, ko K s, k7.[4)

kf]zs : kQ34 : kQ41 lez : k6134 : k6141 k6112 : k6123 : k6141 k6112 : szs : kf]34
kA ’ kA ’ kA ’ kA ’

where
8 =*qo3-*qaa-*qa1 + " q12- *q3a- “qa1 + *q12 - *qo3 - *qai q12 - *qo3 - *qaa

(ii) The mean time to reach state 3 from state %%%
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Proof. (i) The Markov process having only a recurrent class of staféss a
matrix with identical rows(*rr1, *mp, *ms, *m4). Solving the equatiohIl.fQ =
0, we obtain the result announced. (i) Using formula (1), we ob'aif) with
kw(1, 3) as indicated. O

If we adopt the criterion that the mean time to reach state 3 starting from state
1 should be, globally, as short as possible, then the guide function is

N
kf]lz + szs

k Lk
- 9127923

to be minimized under the specified constraints. Since the guide function and the

constraints deals only withy1, and*g,s, k € {1, ..., N}, we can assume th&jas
and*qs1, k € {1,..., N}, are independent df, and denote them byj{, andga1,
respectively.

Now, to simplify the notation, let us write, to meanfg,, andy; to meartgss.
Then, the search for optimal functioning rules amounts to solving the following
problem:

Problem 1.

N

. . - x +

Minimize F(x1, y1, ... s Xks Yks -+ s XN+ YN) :Z ; yyk
k- Jk

k=1

subject to

{xk+yk+1:Ck,k€{1,...,N} @

XN +Y1=c¢n

PROPOSITION 3.2.There exists a unique optimal functioning rui¢Q, ... , ¥ Q),
where

(12, *q23) = }Cl }C
b 2 b 2 N 9y
1 1

Cqr2,qo) = 5Ck Eck—l) , kef2 ...,N}.

Proof.LetAq, ... , Ay be the Lagrange multipliers. We have to solve the system
of equations:
—F—|— Z,\L l =0 ke{l N)
BXk ( )2 k — ’ AR A .

1
—F + + Ay =0,
AV Z J )2
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1
—F+ +x =0 ke{2 ...,N}L
By Z T g2 T
This implies thate, = y;,q fork € {1,..., N—1} andxy = y;. By constraints
(4), we conclude thaty = Jc, k € {1,..., N}, andys = ey, w = 3Ci-1.
k €{2,..., N} SinceF is a convex function, the solution
((lQ12, 16123,) yee e (kchz, kQ23,) yeee s (N912, N6123,))
1 1 1 1 1 1
= —=C1, =C s |l =Cy =Ciz1 ), ..., | =N, =CN—
212N 2k2kl 2N2N1
is a minimum forF'. O

b) Consider now the case when we lump state “waiting” and state “thinking”.
ThensS contains only 3 states. If we allow each philosopher with one fork to aban-
don its single fork before reaching the state with two forks, then the evolution of
thek'" process is represented by the intensity matrix

—*q12 *q12 0
ko = Ko —(%qo1+ *q23)  *qos
Kga 0 —*gm

PROPOSITION 3.3.For thek'” process, (i) A stationary probability is

k k iy fan(Fqa+ Fqo3) “qra- Mgz “qua- Fqos
( T, 2, 7T3) - kA ) kA s kA

where
“A = Fga(*gor+ Fq29) + Fq12- Fqai + Fqr2- Faos.
(i) The Smoluchowskian mean recurrence time of state 3 is

k k

q12+ “q23 1

Q) =+ ¢
qi12 - 423

Q23.

Proof.
(i) As in the preceding case, the Markov process has only a recurrent class of
states, theAIl is a matrix with identical rows. Solving1.*Q = 0, we easily
obtain the result announced.
(ii) The result follows from (i) and equation (3) written 45(3) =

S 1
kﬂs 93 kg3’
O

Suppose now that the rule for coming back to state 1 is the same for all philo-
sophers, so thdiz,; and*gs; are independent df (we denote therg,; andgsy).
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Moreover, suppose that we would like to impose onfthe’s a global level, and in
a similar manner, on thigy»3's. Then the connection into network is expressed by

N N
Y fgo=Aand) ‘gq3=B 5)
k=1

k=1

In order to maximize the time during which the philosophers keep themselves busy
to eat, it suffices to (globally) minimize their Smoluchowskian mean recurrence
times of state 3. This criterion leads to the problem:

o Y (Fqro+ g3 1
Minimize Y "*£(3) =) ( - ) under constraints (5)
=1 =1 \ 412° 7423 q23

To simplify the notation, let us writg, to mearf g, andy; to mearfg,s. Then
the problem to be solved is

Problem 2.
o + (e + i)
Minimize F(x1, Y1, -+ » Xks Yks -+ » XN, YN) = Z 921 T Wk T Vi)
=1 Xk- Yk
subject to

N N
L1=) x—A=0 and £L,=) y-B=0.
k=1 k=1

PROPOSITION 3.4.There exists a set of optimal functioning rules (correspond-
ing to problem 2)*Q, ... , ¥ Q), where‘qp; = (£) *g12.

Proof. Let A; and A, be the Lagrange multipliers. We have to solve the system
of equations

9 0 q12 1
—F+ —QulitirL)=——5———+2=0
Xk dxk (X% Xk
0 0 2 1
P ——(alithody) = ——E—13,=0, ke(l,...,N).
AT 9k X (V)= Yk

.. . N N
This implies that* = 72 = (Zk:ly — k) / (Zkzlxk> = £ and consequently,
yi=3x., ke{l,... N}

SinceF is a convex function ok, y;, ... , Xk, Y&, ... , Xy, ynv (@S sum of con-
vex functions), the solutionfxy, 2x1), ..., (e, Zx0), ..., (xy, Zxy)) are min-
ima for F. O
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4. A problem of access to shared resources

Mutual exclusion must be ensured when many processes require an access to shared
resources. Such a protocol consists of a policy which allows at most one process
to work with the resource. Solutions are proposed in (cf. [8, 12] and solutions by
discrete time Markov model are given in [4,5]). In the present case, the state space
has four elements: ‘request’ (state 1), ‘refusal’ (state 2), ‘acceptance’ (state 3),
‘execution’ (state 4).

In our present continuous-time model, the evolution of kteprocess is rep-
resented by the intensity matrix

—(*q12+ *q130  *q12  Fqu3 0

kg = kga1 —*gn 0 0
0 0 —Fgan —Fqaa
*qa1 0 0 —*gm

where*g1, and*g.3 are supposed to be elements of }J, with x a positive
constant.

PROPOSITION 4.1.(i) A stationary probability for the'”" process is

k. k__ k__ k
(7Tl, R, T3, 7T4,)
k k k k k k k k k k k k
_ ( q21°"934° 441 "q12°934° 441 q13° "q921° 441 q12° g1 6134)

kA ’ kA ’ kA ’ kA
where

KA =%g21-*qaa-*qa1+"q12- *qaa - “qa1 + " q13 - *q21 - Fqa1 + *q13 - 21 - ¥ qaa

(i) The mean recurrence times for state 2 and state 3a@) = %
412792174347 q441
k _ ‘A H
and“u(3) = et ae e respectively. | |
Proof. (i) Here the Markov process has only a recurrent cléBs,is a matrix
with identical rows(*rr1, k75, 73, ¥7r4). Solving the equatiokIl.*Q = 0, we have

the result announced. (i) We use the formtsai) = ﬁ a

One criterion of good functioning is to simultaneously minimize the mean re-
currence time of state 2 and maximize the mean recurrence time of state 3 (i.e.,
to come back as often as possible to state ‘refusal’, and as late as possible to state
‘acceptance’). These two simultaneous objectives (minifhiz®) and maximize

¥11(3) can be combined into a single one by minimizing the funcjiofi ZZ_% =

Z,jle i;’% Such a function has been encountered in other contexts (cf.[4]). In the
other hand, in view of the importance of state 2 and state 3, by imposing a level
on the sum of alfg;, and the sum of alfg,3 the connection into network can be
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expressed in either of the following ways:

N Nk
Zkfhz > Aand Zkfhs > B (6)
k=1 =1
or
N Nk
Zkfhz = A and kas =B (7)
k=1 k=1

The set of inequalities (6) (or (7)) are the constraints of the problem. To simplify
the notation, let us write, instead of ¢13, andy; instead of ¢;,. Recall thaty;, and
yr are supposed to lie in the interval ]9], where x is a positive constant. Then
A and B must satisfyA < Ny andB < Ny. Furthermore, since the objective
function (to be minimized) isZ,]:’:l ’;—i we will also assume that;, > »n, where
O<n<42.

a) With constraints (6) the problem we have to solve is

Problem 3.
N X
Minimize Z K
k=1 Yk
subject to

N N
Y xx=A Y w=B
=1 =1

ng-xkg)(’ 0<yk<X’k€{1,,N}

Although the objective function in this problem is nonconvex, an optimal solu-
tion can be found in closed form. To see this observe that if a feasible solution

(e, y1)s ooy (ks Y1)y - (xyv, ya)) is such thaty, < x for at least onek €
{1,..., N} thend L, % > >0, & This implies that an optimal solution must
satisfyy, = x for everyk € {1,... , N}. Then the problem becomes:
N
Minimize Zxk subject to
k=1
N
Z Xk 2 A

=T
/s

x < x, ke{l,...,N}.
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It is readily seen that the first inequality constraint in this linear program can be
replaced by the equality:

N
Zxk =A
k=1

Indeed, if a feasible solution to this linear program is such thaty_; x, > A
then, sinceV, < A, there exists: € {1,..., N} such thaty < x;, and a better
feasible solution can be obtained by slightly diminishingwhile keeping every
otherxy, k # h, unchanged. Thus, the above linear program can be written as

N
Minimize » " x, subject to
k=1

N
Zxk:A

k=1

n<x<x, ke{l,...,N}.

(8)

Of course, this linear program can be solved numerically by the simplex method.
However, to find a closed form of the optimal solution, we observe that the ex-
treme points of the constraint polytope of this linear program can be computed by
simple formulas. In fact, for each integare {1, ... , N}, letx™ be a vector with
components

xe=mn, Ifl<k<m;
xr=yx, fm<k<N; (9)
xy=A—m—-Dn—(N—-—m)x.

We say that a vectox’ € R" is obtained fromx € R" by a permutation of

components if there exists a 1-1 mappiagof the set{1, ... , N} onto itself such
thatxl.’:xw(,-), i€ {1, ,N}
LEMMA 4.1. The set of extreme points of the polytope
N
Yoxm=A n<u<x.kefl.. N (10)
k=1
consists of all points obtained from¥™ by a permutation of the components, where
N, — N, — A
X <m<1+ X (11)
X—n X—n

Proof. An extreme point of the polytope defined by (10) corresponds to a basic
solution of this linear inequalities system. Since the polytope lies in the linear man-
ifold Z,jle x; = A, each extreme point is determined by a seVef 1 inequalities
among

n<xx < x.ke{l,... , N}
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such that thes&v — 1 inequalities are satisfied by the given extreme point as
equalities. In other words, each extreme point is the unique solution of a linear
system of the form (9), modulo a permutation of the index{%et.. , N}. Here,

one must have < Xﬁ\’,”) < x, hence (11). Furthermore, it can easily be verified
that the latter condition implies that € {1, ... , N}. O

Note that condition (11) completely determinesnamely:

m=1+LNX_AJ, (12)
X—n

where|.] denotes the integer part. Now, it is obvious that the value of the objective
function in (8) is unchanged by a permutation of the index set. Therefore this value
is the same at every extreme point of the constraint polytope, and so an optimal
solution of (8) isx™ given by (9). We have thus proved the following

PROPOSITION 4.2.The optimal functioning rule corresponding to problem 3 is
defined by

kqro=mn 1<k <m;

“qro=»x ifm<k<N;

Ngio=A—(m—1Dn— (N —m)x.
kg1a= x, foreveryk e {1,...,N}

wherem is the integer (12).

b) With constraints (7) the problem to be solved is:

Problem 4.
N X
Minimize > X subject to
1 Yk

L=
ke
I
>

= =
I [M=
N
N
|
o]

X < x,0< < x, ke{l,..., N}
(Recall thatmax(A, B) < N,, andN, < A).

Because of the two equality constraints, this nonconvex problem cannot be re-
duced to a linear program as Problem 3. However, we shall show that, again due
to the special structure of this problem, it is possible to find an optimal solution in
almost closed form.
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For fixedx = (x1,...,xy) €ach functiony — ’y‘—i is convex on the interval
0 < y¢ < x, hence the functiorz,f'=1 ;i is convex on the hyperrectangle|0 <
w<x,.(k=1...,N)}. Letp(x) be the optimal value of the convex program

N N

e X

Minimize Z—ks.t. Zyk =B,0<y<x.kef{l,..., N}
=1 k=1

Since¢ (x) is the pointwise minimum of a family of linear functions— "—i is

a concave function (see e.g. [15]) and so Problem 4 is equivalent to the following

linearly constrained concave minimization problem

N
Minimize g(x) s.t. Y xi=A,n<x < x.ke{l... N}
k=1
As is well known, an optimal solution of this concave minimization problem is
achieved at an extreme point of the constraint polytope, i.e. the polytope (10). Let
x = x™ for m given by (12) and lef = (j, ... , yy) be an optimal solution of
the convex program

N _ N
Minimize Z;C—ks. t Y w=BO<wu<xke(l..,N. (13
k=1 "k k=1

We can now state

PROPOSITION 4.3. An optimal functioning rule corresponding to Problem 4 is
given by

‘ga=n 1<k <m;

k .

gio=yx ifm<k<N,

Ngio=A—(m—Ln—(N—m)y. (14)

kq13=x, foreveryk € {1,...,N}
wherem is the integer (12).

Proof.Clearly, if a vectorc’ is obtained fromx by a permutation of components,
theng (x’) = ¢(x). Hence, ¢ (x) takes on the same value at every extreme point
of the polytope (10). This implies that an optimal solution of Problem & js)
wherex = x™ with m defined by (12), whiley is an optimal solution of the
Program (13).

The convex Program (13) whose optimal solution yields easy to solve. We
can also show that if the parametdtsy andp satisfy suitable conditions then a
closed form ofy can be found. To this end, consider the convex program obtained
from (13) by omitting the constraints @ y, < x,k € {1,..., N}, i.e.

N - N
Minimize st > w =B (15)
k=1 k=1
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— N i T .
Denotef (x,y) = ,_; f—i The Lagrange multipliers method gives

N -

a ad
—ft+Ar— i — B | = +A=0kefl,...,N
T4 ]Zy’ " { }

so thaty, = \/% k € {1,..., N} which implies that/A = %Z,ﬂvzl VX%. Con-
sequently, an optimal solutiohof Problem (15) is given by

B3
yAkz—\/x_k , kef{l,...,N}
N —
and the optimal value is
Nos N 2
> 2= 3(1va).
k=1 k=1

For y to be an optimal solution of (13), it suffices that it is feasible to (13), i.e.

B
\/_ < x, foreveryk € {1,..., N} (16)
] l\/>
Sincex € {n, x} fork{=1,... ,N — 1} andn < xy < yx, the above condition
holds when
BYX _ :
X, lLe.B<N/nx.
N[ nx
Thus if B < N./nx, theny is an optimal solution of Problem (13). O

A more refined result is the following:

PROPOSITION 4.4.Assume

M[H/(N_D(;_ )] an

Theny is an optimal solution of (13), i.e. in (14):

3% = 9, foreveryk e {1,..., N}.
Proof. Denote

=" Vi
=(m —1yn+ (N —m)J/x ++vA—(m—Dn—(N—my.
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We have to prove that under condition (17):

% < X (18)
Forl<m < N, letn,, be the value of; for which

N, — A

X = Nm

=m-—1 (29)

Then forn,, < n < 1,41, We have

N, — A
\\ X J:m—l.
X—n

From (19):

Ny —A

m—1

Mn = X — (20)

which shows thatj,, increases as: increases. On the other hand, fgr < n <
nm+1, the derivative of the function(n) is

— — m—1 > 0
2yn 2JA—(m—Dn—(N—m)y

because) < 7,1 implies by (20):A — (N —m)x —mn > 0. So the function(n)
is increasing in the intervdh,,, n,,.;). Furthermore,

[N, —A
V(myr — 0) =(m — 1),/ x — Xm + (N —m)/x
N, — A
+\/A—(m—1)(x— Xm ) — (N —m)x
o ANy A= (N —my
=m—1) - + (N —m)/x -
:m,/—A_(A,;_m)X (N —m)Jx

:V(n)n+l)-

V() = (m —1)

Hencev(n) is increasing in each interv@,,, n,.1],m € {2,... ,N — 1}, i.e.in
the whole interval §, ny]. For 0 < n < n,, we haven = 1, so

v(in) =N —-1)/x +vVA—(N—Dy.

while

v(2) = 2+ (N —2/% + VA —(12) — (N — 2)x.
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This yields by substituting, = A — (N — 1,

v(m2) =vVA-=(N=-Dx+ N -1DJx.

i.e.v(n) =v(ny) for0 < n < ny.
We have thus proved that the functioty) is increasing in the whole interval

0 < n < nn. (Note that sinceV, < A, we always havg(NTXnN, son < ny). Since
Ny = H it then follows from the assumption (17) that

BVX _ B/x
viny) V(N =D(A—-x)+ /X
Therefore, for ally €]0, ny]

o) S vy X

<X

as desired. O

Finally, it is worth noticing that the ‘bounding’ method earlier introduced in [3]
for the problem of routing distributed algorithms would give essentially the same
result, though with a less satisfactory theoretical foundation concerning the global
optimality of the solution.
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