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Abstract. The paper presents a new stochastic model for studying the optimization of function-
ing rules in distributed computing. In this model a network is represented by a finite number of
continuous-time homogeneous Markov processes which are connected by relations between entries
of their intensity matrices. Good functioning rules are those optimizing a guide function defined
according to the context. Two specific optimization problems are studied: a problem of resource
allocation with conflicts between processes, and a problem of access to shared resources. The latter
is a linearly constrained nonconvex problem with an objective function which is a sum of ratios of
linear functions of special form.
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1. Introduction

The aim of this paper is to develop a new continuous-time stochastic model for
optimizing the functioning of distributed computing networks. Although this model
is technically more difficult to handle than the discrete-time model developed in our
previous papers [2, 4, 5] it is closer to reality, and at the same time, more flexible
for the applications. Taking into account the importance of local considerations,
the model involves local states for each site, transitions between these states and
relations characterizing the network, along with a guide function which defines the
criterion of good functioning. More specifically, a distributed system is represen-
ted by a finite number of interconnected homogeneous continuous-time Markov
processes. The interconnection into network is ensured by relations between the
entries of the intensity matrices of these Markov processes. The entries of the
intensity matrices are the ‘variables’ of the model, the relations describing the
interconnection constitute the ‘constraints’, while the guide function defining the
criterion of functioning is the objective function to be optimized. An optimal func-
tioning rule of the system is then an optimal solution of this constrained optimiza-
tion problem. As illustrations, we shall discuss two optimization problems arising
from this model: the problem of resource allocation with conflicts between pro-
cesses, formulated through the model of the ‘dining philosophers problem’, and
the problem of access to shared resources with mutual exclusion. It turns out that
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in each considered case, by exploiting the particular structure of the problem, an
optimal solution can be found in closed form, even though the objective function
may be highly nonconvex (sum of ratios of linear functions). The emphasis on
closed forms for optimal solutions is motivated by our primary interest in clari-
fying general optimal functioning rules rather than in solving specific numerical
problems.

We refer the reader to [1, 6], [14, 13] for the general concepts, models and
applications of distributed computing; to [2–5], for studies on Optimization and
Performance Evaluation in Distributed Computing, especially via a discrete-time
stochastic model; to [15] for basic concepts and results in global optimization;
and finally to [10, 11] for basic concepts and results on Probability Theory and
Stochastic Processes.

2. Continuous-time Markov networks

Let (kXt )t>0, k ∈ {1, . . . , N} beN homogeneous continuous-time Markov pro-
cesses defined on a probability space (�,A, Pr), having the same finite state space
S.

Suppose that their stochastic matrices

kP (t) = (kp(t, i, j))
j,j∈S , t > 0, k ∈ {1, . . . , N},

satisfy the condition limt→0
kP (t) = I, I being the identity matrix, viz. limt→0

k

P (t, i, j) = 1 if i = j and = 0 ifi 6= j .
We recall that then the limit

kP (t) = lim
t>0,t→0

kP (t)− I
t

= kQ exists,

wherekQ is a matrix whose entries satisfy

kqij > 0 if i 6= j, and kqii 6 0, with∑
j∈S

kqij = 0, i ∈ S, k ∈ {1, . . . , N}.

For convenience, denotekqi = −(kqii) > 0, i ∈ S. The following results will be
used in the next section:

a) kP (t) = e
kQt = I + ∑n>1 (

kQ)n t
n

n! , t > 0, kQ is called theintensity
matrix of kP (t). (cf. [10], p. 238)

b) The limit limt→∞ kP (t, i, j) = kπ(i, j), i, j ∈ S, exist for anyk and their
convergence is exponentially fast. In matrix notation,

lim
t→∞

kP = k5 andk5.kQ = 0
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In the present case, we suppose that∀k ∈ 1, . . . , N there is only one class of
(recurrent) states. Thekπ(i, j)’s are then independent ofi and we shall denote
them bykπj . In this case,k5 is a matrix with identical rows, and a row ofk5
is a stationary probability distribution for thekth process.

c) Let now kW = (kw(i, j))i,j∈S be the matrix whose entrieskw(i, j) are the
meansEi(kτj ) of the first passage timeskτj (of thekth process) starting from
i,k τj being defined askτj = min{t > 0 : kXt = j}. Then

kW = (Ê.kZdg − kZ).(k5dg)
−1 (1)

whereÊ is the matrix whose entries are all equal to 1,kZ = (k5 − kQ)−1

andkZdg denotes the matrix resulting from setting all the entries ofkZ off the
main diagonal equal to 0, and similarly fork5dg. (cf. [10], Proposition 8.9, p.
255).

d) Let kµ(i) be the mean recurrence time of statei, i.e., the mean time elapsed
between an entry into statei and the next return toi (of the kth process),
consisting of a sojourn time ini ending in a jump to somej ∈ S, j 6= i,
followed by a first passage fromj to i. Then

kµ(i) = 1
kπj.kqi

, i ∈ S (2)

Let kξ(i) be the Smoluchowskian mean recurrence time (cf.[10], p. 256), i.e.
the mean time elapsed between an exit fromi and the next return toi. Then

kξ(i) = 1− kπi
kπi.kqi

(3)

In our model, theN continuous time Markov processes representN processors,
connected in network by relationsRh, h ∈ H , between entries of their intensity
matriceskQ, k ∈ {1, . . . , N}. According to the context, a guide functionF is
defined on the entries ofkQ, k ∈ {1, . . . , N}. A functioning rule for such a net-
work is represented by a vector whose components are the entrieskq(i, j), i, j ∈
S, k ∈ {1, . . . , N}, of intensity matrices satisfyingRh, h ∈ H . Choices for good
functionings are based on criteria which optimizeF under constraintsRh, h ∈ H .

In general many criteria are available. In this paper we focus on those criteria for
which the optimal solution of the corresponding problem can be found in closed
form, so that general functioning rules based on these criteria can be explicitly
derived in terms of the values of the basic parameters of the problem.

Next we discuss the application of this approach to two typical problems: the
so-called ‘dining philosophers problem’ which models a problem of resource al-
location with conflicts, and the problem of access to shared resources, which is a
mutual exclusion problem.
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3. A problem of resource allocation with conflicts

In this problem of resource allocation with conflicts between processes in distrib-
uted computing (cf. [7,9]), theN processors are represented byN philosophers
arranged in a circle around a spaghettis plate, with a fork between each pair of
philosophers. In order to eat, each philosopher needs his two adjacent forks. As
above-mentioned, we can consider several possibilities for using the model for a
given problem. Here we propose to examine two typical cases.

a) In the first case, the state space S consists of four elements: ‘waiting (request)’
(state 1), ‘with one fork (refusal)’ (state 2), ‘with 2 forks (acceptance)’ (state 3),
‘thinking (execution)’ (state 4). The evolution of thekth philosopher is represented
by the intensity matrix

kQ =


−kq12

kq12 0 0
0 −kq23

kq23

0 0 −kq34 −kq34
kq41 0 0 −kq41


For a small lapse of time1t , the corresponding stochastic matrixkP (1t) is

equivalent to
1− kq121t

kq121t 0 0
0 1− kq231t

kq231t

0 0 1− kq341t −kq341t
kq411t 0 0 1− kq411t

 .
An efficient functioning of the network should ensure that the time during which
the philosophers keep themselves busy to eat is as long as possible. This suggests
that the chance of a philosopher to pass from state 2 to state 3 should be linked with
the chance of his neighbour to pass from state 1 to state 2, SO that the connection
into network can be expressed as{

kq12+ k+1q23 = ck, k ∈ {1, . . . , N}
Nq12+ 1q23 = cN, where c1, . . . , cN are constant.

PROPOSITION 3.1.(i) A stationary probability for thekth process is(
kπ1,

kπ2,
kπ3,

kπ4
)

(
kq23 · kq34 · kq41

k1
,
kq12 · kq34 · kq41

k1
,
kq12 · kq23 · kq41

k1
,
kq12 · kq23 · kq34

k1
,

)
where

kδ = kq23 · kq34 · kq41+ kq12 · kq34 · kq41+ kq12 · kq23 · kq41
kq12 · kq23 · kq34

(ii) The mean time to reach state 3 from state 1 is
kq12+kq23
kq12·kq23

.
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Proof. (i) The Markov process having only a recurrent class of states,k5 is a
matrix with identical rows

(
kπ1,

kπ2,
kπ3,

kπ4
)
. Solving the equationk5.kQ =

0, we obtain the result announced. (ii) Using formula (1), we obtainkW , with
kw(1,3) as indicated. 2

If we adopt the criterion that the mean time to reach state 3 starting from state
1 should be, globally, as short as possible, then the guide function is

N∑
k=1

kq12+ kq23
kq12 · kq23

to be minimized under the specified constraints. Since the guide function and the
constraints deals only withkq12 andkq23, k ∈ {1, . . . , N}, we can assume thatkq34

andkq41, k ∈ {1, . . . , N}, are independent ofk, and denote them by (q34 andq41,
respectively.

Now, to simplify the notation, let us writexk to meankq12, andyk to meankq23.
Then, the search for optimal functioning rules amounts to solving the following
problem:

Problem 1.

Minimize F(x1, y1, . . . , xk, yk, . . . , xN , yN) =
N∑
k=1

xk + yk
xk · yk

subject to{
xk + yk+1 = ck, k ∈ {1, . . . , N}
xN + y1 = cN (4)

PROPOSITION 3.2.There exists a unique optimal functioning rule:(1Q, . . . , NQ),
where

(1q12,
1q23) =

(
1

2
c1,

1

2
cN

)
,

(kq12,
kq23) =

(
1

2
ck,

1

2
ck−1

)
, k ∈ {2, . . . , N}.

Proof.Letλ1, . . . , λN be the Lagrange multipliers. We have to solve the system
of equations:

∂

∂xk
F + ∂

∂xk

N∑
j=1

λjLj = − 1

(xk)
2
+ λk = 0, k ∈ {1, . . . , N}.

∂

∂yk
F + ∂

∂yk

N∑
j=1

λjLj = − 1

(y1)
2
+ λN = 0,
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∂

∂yk
F + ∂

∂yk

N∑
j=1

λjLj = − 1

(yk)2
+ λk = 0, k ∈ {2, . . . , N}.

This implies thatxk = yk+1 for k ∈ {1, . . . , N−1} andxN = y1. By constraints
(4), we conclude thatxk = 1

2ck, k ∈ {1, . . . , N}, andy1 = 1
2cN, yk = 1

2ck−1,

k ∈ {2, . . . , N} SinceF is a convex function, the solution(( 1q12,
1q23,

)
, . . . ,

(
kq12,

kq23,
)
, . . . ,

(
Nq12,

Nq23,
))

=
((

1

2
c1,

1

2
cN

)
, . . . ,

(
1

2
ck,

1

2
ck−1

)
, . . . ,

(
1

2
cN,

1

2
cN−1

))

is a minimum forF . 2
b) Consider now the case when we lump state “waiting” and state “thinking”.

ThenS contains only 3 states. If we allow each philosopher with one fork to aban-
don its single fork before reaching the state with two forks, then the evolution of
thekth process is represented by the intensity matrix

kQ =
 − kq12

kq12 0
kq21 −( kq21+ kq23)

kq23
kq31 0 − kq31


PROPOSITION 3.3.For thekth process, (i) A stationary probability is(

kπ1,
kπ2,

kπ3
) = ( kq31(

kq21+ kq23)

k1
,
kq12 · kq31

k1
,
kq12 · kq23

k1

)
where

k1 = kq31(
kq21+ kq23)+ kq12 · kq31+ kq12 · kq23.

(ii) The Smoluchowskian mean recurrence time of state 3 is

kξ(3) =
kq12+ kq23
kq12 · kq23

+ 1
kq23

.

Proof.
(i) As in the preceding case, the Markov process has only a recurrent class of

states, thenk5 is a matrix with identical rows. Solvingk5.kQ = 0, we easily
obtain the result announced.

(ii) The result follows from (i) and equation (3) written askξ(3) = 1
kπ3.

kq3
− 1

kq3
.2

Suppose now that the rule for coming back to state 1 is the same for all philo-
sophers, so thatkq21 andkq31 are independent ofk (we denote themq21 andq31).
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Moreover, suppose that we would like to impose on thekq12’s a global level, and in
a similar manner, on thekq23’s. Then the connection into network is expressed by

N∑
k=1

kq12 = A and
N∑
k=1

kq23 = B (5)

In order to maximize the time during which the philosophers keep themselves busy
to eat, it suffices to (globally) minimize their Smoluchowskian mean recurrence
times of state 3. This criterion leads to the problem:

Minimize
N∑
k=1

kξ(3) =
N∑
k=1

(
kq12+ kq23
kq12 · kq23

+ 1
kq23

)
under constraints (5).

To simplify the notation, let us writexk to meankq12, andyk to meankq23. Then
the problem to be solved is

Problem 2.

Minimize F(x1, y1, . . . , xk, yk, . . . , xN , yN) =
N∑
k=1

q21+ (xk + yk)
xk.yk

subject to

L1 =
N∑
k=1

xk − A = 0 and L2 =
N∑
k=1

yk − B = 0.

PROPOSITION 3.4.There exists a set of optimal functioning rules (correspond-
ing to problem 2)(1Q, . . . , NQ), wherekq23 =

(
B
A

)
.kq12.

Proof. Let λ1 andλ2 be the Lagrange multipliers. We have to solve the system
of equations

∂

∂xk
F + ∂

∂xk
(λ1L1+ λ2L2) = − q12

(xk)2yk
− 1

xk
+ λ1 = 0.

∂

∂yk
F+ ∂

∂yk
(λ1L1+λ2L2) = − q12

xk(yk)2
− 1

yk
+λ2=0, k∈{1, . . . , N}.

This implies thatyk
xk
= λ1

λ2
=
(∑N

k=1 y − k
)
/
(∑N

k=1 xk

)
= B

A
and consequently,

yk = B
A
xk, k ∈ {1, . . . , N}.

SinceF is a convex function ofx1, yl, . . . , xk, yk, . . . , xN, yN (as sum of con-
vex functions), the solutions

(
(x1,

B
A
x1), . . . , (xk,

B
A
xk), . . . , (xN ,

B
A
xN)

)
are min-

ima forF . 2
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4. A problem of access to shared resources

Mutual exclusion must be ensured when many processes require an access to shared
resources. Such a protocol consists of a policy which allows at most one process
to work with the resource. Solutions are proposed in (cf. [8, 12] and solutions by
discrete time Markov model are given in [4,5]). In the present case, the state space
has four elements: ‘request’ (state 1), ‘refusal’ (state 2), ‘acceptance’ (state 3),
‘execution’ (state 4).

In our present continuous-time model, the evolution of thekth process is rep-
resented by the intensity matrix

kQ =


−( kq12+ kq13)

kq12
kq13 0

kq21 − kq21 0 0
0 0 − kq34 − kq34
kq41 0 0 − kq41


where kq12 and kq13 are supposed to be elements of ]0,χ ] with χ a positive
constant.

PROPOSITION 4.1.(i) A stationary probability for thekth process is(
kπ1,

kπ2,
kπ3,

kπ4,
)

=
(
kq21 · kq34 · kq41

k1
,
kq12 · kq34 · kq41

k1
,
kq13 · kq21 · kq41

k1
,
kq12 · kq21 · kq34

k1

)
where

k1 = kq21 · kq34 · kq41+ kq12 · kq34 · kq41+ kq13 · kq21 · kq41+ kq13 · kq21 · kq34

(ii) The mean recurrence times for state 2 and state 3 arekµ(2) = k1
kq12·kq21·kq34·kq41

andkµ(3) = k1
kq13·kq21·kq34·kq41

, respectively.

Proof. (i) Here the Markov process has only a recurrent class,k5 is a matrix
with identical rows(kπ1,

kπ2,
kπ3,

kπ4). Solving the equationk5.kQ = 0, we have
the result announced. (ii) We use the formulakπ(i) = 1

kπi .
kqi

. 2
One criterion of good functioning is to simultaneously minimize the mean re-

currence time of state 2 and maximize the mean recurrence time of state 3 (i.e.,
to come back as often as possible to state ‘refusal’, and as late as possible to state
‘acceptance’). These two simultaneous objectives (minimizekµ(2) and maximize
kµ(3) can be combined into a single one by minimizing the function

∑N
k=1

kµ(2)
kµ(3) =∑N

k=1

kq13
kq12

Such a function has been encountered in other contexts (cf.[4]). In the
other hand, in view of the importance of state 2 and state 3, by imposing a level
on the sum of allkq12 and the sum of allkq13 the connection into network can be
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expressed in either of the following ways:

N∑
k=1

kq12 > A and
Nk∑
k=1

kq13 > B (6)

or

N∑
k=1

kq12 = A and
Nk∑
k=1

kq13 = B (7)

The set of inequalities (6) (or (7)) are the constraints of the problem. To simplify
the notation, let us writexk instead ofkq13, andyk instead ofkq12. Recall thatxk and
yk are supposed to lie in the interval ]0,χ ], whereχ is a positive constant. Then
A andB must satisfyA 6 Nχ andB 6 Nχ . Furthermore, since the objective
function (to be minimized) is

∑N
k=1

xk
yk

we will also assume thatxk > η, where

0< η < A
N

.
a) With constraints (6) the problem we have to solve is

Problem 3.

Minimize
N∑
k=1

xk

yk

subject to
N∑
k=1

xk = A
N∑
k=1

yk > B

η 6 xk 6 χ, 0< yk 6 χ, k ∈ {1, . . . , N}
Although the objective function in this problem is nonconvex, an optimal solu-

tion can be found in closed form. To see this observe that if a feasible solution
((xl, y1), . . . , (xk, yk), . . . (xN, yN)) is such thatyk < χ for at least onek ∈
{1, . . . , N}, then

∑N
k=1

xk
yk
>
∑N

k=1
xk
χ

This implies that an optimal solution must
satisfyyk = χ for everyk ∈ {1, . . . , N}. Then the problem becomes:

Minimize
N∑
k=1

xk subject to


N∑
k=1

xk > A

η 6 xk 6 χ, k ∈ {1, . . . , N}.
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It is readily seen that the first inequality constraint in this linear program can be
replaced by the equality:

N∑
k=1

xk = A

Indeed, if a feasible solutionx to this linear program is such that
∑N

k=1 xk > A

then, sinceNη < A, there existsh ∈ {1, . . . , N} such thatη < xh and a better
feasible solution can be obtained by slightly diminishingxh while keeping every
otherxk, k 6= h, unchanged. Thus, the above linear program can be written as

Minimize
N∑
k=1

xk subject to
N∑
k=1
xk = A

η 6 xk 6 χ, k ∈ {1, . . . , N}.

(8)

Of course, this linear program can be solved numerically by the simplex method.
However, to find a closed form of the optimal solution, we observe that the ex-
treme points of the constraint polytope of this linear program can be computed by
simple formulas. In fact, for each integerm ∈ {1, . . . , N}, let x(m) be a vector with
components xk = η, if 1 6 k < m;

xk = χ, if m 6 k < N;
xN = A− (m− 1)η − (N −m)χ.

(9)

We say that a vectorx′ ∈ RN is obtained fromx ∈ RN by a permutation of
components if there exists a 1-1 mapping$ of the set{1, . . . , N} onto itself such
thatx′i = x$(i), i ∈ {1, . . . , N}.
LEMMA 4.1. The set of extreme points of the polytope

N∑
k=1

xk = A, η 6 xk 6 χ, k ∈ {1, . . . , N} (10)

consists of all points obtained fromx(m) by a permutation of the components, where

Nχ − A
χ − η 6 m 6 1+ Nχ − A

χ − η (11)

Proof.An extreme point of the polytope defined by (10) corresponds to a basic
solution of this linear inequalities system. Since the polytope lies in the linear man-
ifold

∑N
k=1 xk = A, each extreme point is determined by a set ofN−1 inequalities

among

η 6 xk, xk 6 χ, k ∈ {1, . . . , N}
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such that theseN − 1 inequalities are satisfied by the given extreme point as
equalities. In other words, each extreme point is the unique solution of a linear
system of the form (9), modulo a permutation of the index set{1, . . . , N}. Here,
one must haveη 6 X

(m)
N 6 χ , hence (11). Furthermore, it can easily be verified

that the latter condition implies thatm ∈ {1, . . . , N}. 2
Note that condition (11) completely determinesm, namely:

m = 1+
⌊
Nχ − A
χ − η

⌋
, (12)

whereb.c denotes the integer part. Now, it is obvious that the value of the objective
function in (8) is unchanged by a permutation of the index set. Therefore this value
is the same at every extreme point of the constraint polytope, and so an optimal
solution of (8) isx(m) given by (9). We have thus proved the following

PROPOSITION 4.2.The optimal functioning rule corresponding to problem 3 is
defined by

kq12 = η if 16 k < m;
kq12 = χ if m 6 k < N;
Nq12 = A− (m− 1)η − (N −m)χ.

kq13 = χ, for everyk ∈ {1, . . . , N}
wherem is the integer (12).

b) With constraints (7) the problem to be solved is:

Problem 4.

Minimize
N∑
k=1

xk

yk
subject to



N∑
k=1

xk = A
N∑
k=1

yk = B
η 6 xk 6 χ,06 yk 6 χ, k ∈ {1, . . . , N}.

(Recall thatmax(A,B) 6 Nχ , andNη < A).

Because of the two equality constraints, this nonconvex problem cannot be re-
duced to a linear program as Problem 3. However, we shall show that, again due
to the special structure of this problem, it is possible to find an optimal solution in
almost closed form.
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For fixedx = (x1, . . . , xN ) each functiony 7→ xk
yk

is convex on the interval

0 < yk 6 χ , hence the function
∑N

k=1
xk
yk

is convex on the hyperrectangle{y|0 <
yk 6 χ, (k = 1, . . . , N)}. Letφ(x) be the optimal value of the convex program

Minimize
N∑
k=1

xk

yk
s. t.

N∑
k=1

yk = B,0< yk 6 χ, k ∈ {1, . . . , N}.

Sinceφ(x) is the pointwise minimum of a family of linear functionsx 7→ xk
yk

is
a concave function (see e.g. [15]) and so Problem 4 is equivalent to the following
linearly constrained concave minimization problem

Minimize φ(x) s. t.
N∑
k=1

xk = A, η < xk 6 χ, k ∈ {1, . . . , N}.

As is well known, an optimal solution of this concave minimization problem is
achieved at an extreme point of the constraint polytope, i.e. the polytope (10). Let
x̄ = x(m) for m given by (12) and let̄y = (ȳ, . . . , ȳN ) be an optimal solution of
the convex program

Minimize
N∑
k=1

x̄k

yk
s. t.

N∑
k=1

yk = B,0< yk 6 χ, k ∈ {1, . . . , N}. (13)

We can now state

PROPOSITION 4.3.An optimal functioning rule corresponding to Problem 4 is
given by

kq12 = η if 16 k < m;
kq12 = χ if m 6 k < N;
Nq12 = A− (m− 1)η − (N −m)χ.

kq13 = χ, for everyk ∈ {1, . . . , N}
(14)

wherem is the integer (12).

Proof.Clearly, if a vectorx′ is obtained fromx by a permutation of components,
thenφ(x′) = φ(x). Hence,φ(x) takes on the same value at every extreme point
of the polytope (10). This implies that an optimal solution of Problem 4 is(x̄, ȳ)

where x̄ = x(m) with m defined by (12), whileȳ is an optimal solution of the
Program (13).

The convex Program (13) whose optimal solution yieldsȳ is easy to solve. We
can also show that if the parametersB,χ andη satisfy suitable conditions then a
closed form ofȳ can be found. To this end, consider the convex program obtained
from (13) by omitting the constraints 0< yk 6 χ, k ∈ {1, . . . , N}, i.e.

Minimize
N∑
k=1

x̄k

yk
s. t.

N∑
k=1

yk = B. (15)
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Denotef (x̄, y) =∑N
k=1

x̄k
yk

. The Lagrange multipliers method gives

∂

∂yk
f + λ ∂

∂yk

 N∑
j=1

yj − B
 = − x̄k

(yk)2
+ λ = 0, k ∈ {1, . . . , N}

so thatyk =
√
x̄k
λ
, k ∈ {1, . . . , N} which implies that

√
λ = 1

B

∑N
k=1

√
x̄k. Con-

sequently, an optimal solution̂y of Problem (15) is given by

ŷk = B
√
x̄k∑N

j=1

√
x̄j
, k ∈ {1, . . . , N}

and the optimal value is

N∑
k=1

x̄k

ŷk
= 1

B

(
N∑
k=1

√
x̄k

)2

.

For ŷ to be an optimal solution of (13), it suffices that it is feasible to (13), i.e.

B
√
x̄k∑N

j=1

√
x̄j
6 χ, for everyk ∈ {1, . . . , N} (16)

Sincex̄ ∈ {η, χ} for k{= 1, . . . , N − 1} andη 6 x̄N 6 χ , the above condition
holds when

B
√
χ

N
√
η
6 χ, i.e.B 6 N√ηχ.

Thus ifB 6 N√ηχ , thenŷ is an optimal solution of Problem (13). 2
A more refined result is the following:

PROPOSITION 4.4.Assume

B < χ

[
1+

√
(N − 1)

(
A

χ
− 1

)]
. (17)

Thenŷ is an optimal solution of (13), i.e. in (14):

ȳk = ŷk, for everyk ∈ {1, . . . , N}.
Proof.Denote

ν(η) =
∑N

k=1

√
x̄k

=(m− 1)
√
η + (N −m)√χ +√A− (m− 1)η − (N −m)χ.
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We have to prove that under condition (17):

B
√
χ

N
√
η
6 χ. (18)

For 1< m 6 N , let ηm be the value ofη for which

Nχ − A
χ − ηm = m− 1. (19)

Then forηm < η 6 ηm+1, we have⌊
Nχ − A
χ − η

⌋
= m− 1.

From (19):

ηm = χ − Nχ − A
m− 1

(20)

which shows thatηm increases asm increases. On the other hand, forηm 6 η <

ηm+1, the derivative of the functionν(η) is

ν′(η) = (m− 1)− 1

2
√
η
− m− 1

2
√
A− (m− 1)η − (N −m)χ > 0.

becauseη < ηm+1 implies by (20):A− (N −m)χ −mη > 0. So the functionν(η)
is increasing in the interval[ηm, ηm+i ). Furthermore,

ν(ηm+1 − 0) =(m− 1)

√
χ − Nχ − A

m
+ (N −m)√χ

+
√
A− (m− 1)(χ − Nχ − A

m
)− (N −m)χ

=(m− 1)

√
A− (N −m)χ

m
+ (N −m)√χ

√
A− (N −m)χ

m

=m
√
A− (N −m)χ

m
+ (N −m)√χ

=ν(ηm+1).

Henceν(η) is increasing in each interval[ηm, ηm+1], m ∈ {2, . . . , N − 1}, i.e. in
the whole interval [η2, ηN ]. For 0< η < η2, we havem = 1, so

ν(η) = (N − 1)
√
χ +√A− (N − 1)χ.

while

ν(η2) = √η2+ (N − 2)
√
χ +√A− (η2)− (N − 2)χ.
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This yields by substitutingη2 = A− (N − 1)χ ,

ν(η2) =
√
A− (N − 1)χ + (N − 1)

√
χ.

i.e.ν(η) = ν(η2) for 0< η 6 η2.
We have thus proved that the functionν(η) is increasing in the whole interval

0 < η 6 ηN . (Note that sinceNη < A, we always haveNχ
χ−ηN , soη 6 ηN ). Since

ηN = A−χ
N−1 it then follows from the assumption (17) that

B
√
χ

ν(ηN)
= B

√
χ√

(N − 1)(A− χ)+√χ 6 χ.

Therefore, for allη ∈]0, ηN ]
B
√
χ

ν(η)
6
B
√
χ

ν(ηN)
6 χ,

as desired. 2
Finally, it is worth noticing that the ‘bounding’ method earlier introduced in [3]

for the problem of routing distributed algorithms would give essentially the same
result, though with a less satisfactory theoretical foundation concerning the global
optimality of the solution.
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